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ABSTRACT 

A method for successive approximations for partial differential equations 
is presented. The limiting function in the process depends on the initial value. 
Convergence is proved by means of some identities aria inequalities involving 
tensor products between multi-linear functions on a vector space. 

1. Introduction. In this paper there is presented a method of successive approxi- 
mations for partial differential equations. Although the method yields iterants 
for wide class of problems, it is studied here in connection with constant co- 
efficient linear equations. To get a rough indication of the method, consider a 
real-valued function U which for some positive integer n and some positive integer 
m is n-times continuously differentiable in some convex domain D of Em which 
contains the origin. Using Fr6chet derivatives one has (c.f. [2], p. 92) the Taylor 
formula 

n-1 fl 
U(x) = Y. (1/q!)U(q)(O)x~ + djl'(1 - j ) n - 1 / ( n  - 1)!'lU(n)(jx)x ~ 

q=0 0 

for all x in D. Now, suppose one wants to solve a certain nth order partial dif- 
ferential equation (*) on a subset of D. As a first step one might attempt to find a 
real-valued function T U  on a subset of D which is "closer" to a solution of (*) 
than is U by taking, for each x in D, 

n--1 f ~  ( T U ) ( x )  = ~, (1/q!)Utq)(O)xq + dj[(1 - j ) ' - l / ( n -  1)!]{Sjx[U(~)(jx)]}x ~ 
q=0 

where, if w is in D, SwI'U (~) (w)] is an appropriate "minimal modification" of 
U ~) (w) which satisfies (*) at w. 

This term "minimal modification" is made precise and convergence of T~U 
to a solution of (*) as q -+ oo is proved for analytic U for the case in which(*)is a 
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constant coefficient linear n-th order partial differential equation with no lower 
order terms and with polynomial inhomogeneous part. It is noted that for any 
n-times continuously differentiable function U on D, TU = U if and only if U is 
already a solution to (*). 

The limiting function for this successive approximation process is not (unlike 
the case of successive approximation for ordinary differential equations) inde- 
pendent of the "initial estimate". In fact the transformation which pairs initial 
estimates with corresponding limiting functions is a projection in a space of 
analytic functions. 

The convergence argument depends on some inequalities and identities con- 
cerning symmetric products between symmetric multilinear functions. Some 
preliminaries concerning tensor products are presented in Section 2 after cer- 
tain inner product spaces of multilinear functions are defined. Section 3 gives 
some theorems on transformations in spaces of multilinear functions. Section 
4 gives the main result and in Section 5 some examples are considered. 

2. This section contains some preliminaries concerning multilinear functions. 
For this entire section, suppose that m is a positive integer. If n is a positive 
integer, denote by Mm.~ the linear space of real n-linear functions on the real, 
m dimensional inner product space Em and denote by Sin,, the subspace of sym- 
metric n-linear functions. As in ([1], p. 206), for example, if each of n and k is 
a positive integer, u is in Mm,,, w is in M,~,k, then the tensor product u ® w is the 
member of M,,,~+k such that (u @ w) ( x l ,  . .,x~+k) = u(x l ,  . . ,x~)w(x~+ ~, . .,x~+k) 

for all x~, . . , X , + k  in Era. If n = 1 and u is in Era, then u ® w = u' ® w 
and w ® u = w ® u' when u' is dual to u. Similarly, if each of u and w is in Era, 
then u ® w = u' ® w' when u', w' are dual to u, w respectively. The tensor product 
so defined gives a bilinear function from Mm,, x Mm,k to Mm,~+k. In addition, 
Mm,, is generated linearly by elements of the form xl ® .. ® x~ such that each 
of x l , . .  ,x~ is in Em ([1], p. 206). 

As noted in ([I], p. 79), an inner product in Mm,~ is introduced by specifying that 

(xl ® .. ® x~, y~ ® .. ® y,) = (xl, y : ) . .  (x~, y~) 

if each of xl , . . ,x~,  y l , . . , y ,  is in E,,. If each of u and w is in Mm,~, the inner 
product of u and w is denoted simply by uw. The  same convention will be used 
for the inner product of a vector x in Em with a vector y in Era, that is, the inner 
product of x with y will be denoted by xy. 

If t is a positive integer greater than n, w is in Mm,, and each of x~,..  ,xt-~ is in 
E,~, then w(x 1 , . . ,  xt - ~) denotes the element g of Mm,~ such that if each of y 1 , . . ,  y,  
is in Era, then g ( y l , . . , y , ) = - w ( y l , . . , y ~ , x l , . . , x t - , ) ,  i.e., ( w ( x l , . . , x , _ , ) )  
(y~,..  ,y~)= w(y~,.. , y , , x ~ , . . , x t _ , ) .  If, in addition, z is in Mm.,, then the inner 
product w z - - z w  is defined as the member h of Mm,~-t so that h ( x ~ , . . , x , _ ~ )  

-- z(w(xl,..,xt-~)) if each of x l , . . ,  xt-~ is in Era. 
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If  each of k and n is a positive integer, denote by Jk,n the set of all sequences 
{P~}~=I such that Pl is in {1, . . ,k} ,  i = 1 , , .  ,n, and denote by Kk,. the set of all 
sequences {q,}~=l such that q, is in {0,1 , . . ,n} ,  i =  1, . . , k ,  and ]~,=lq,k = n. 
Denote by ~k,. the function from Jk,. to Kk,. such that if p = {Pi}7= ~ is in Jk,., then 
~k,.(P) is the element {q~}~= 1 of Kk, . such that if i is in {1, . . ,k} ,  then q~ is the 
number of integers j in {1, . . ,  n} such that Pi = i. 

I f  each of  t ,s  and r is a positive integer, r < s, z is in Mma , x = Xa, . .  ,x~ is a 
sequence each term of which is in Em and p = {Pi}~' = 1 is a member of J~,,, then 
z(xp) denotes z(xp,, . ., xp.). 

By convention, if z is in M,.,. and x is in E,., then zx  = zx '  where x '  is dual to x 
and hence, if each of Yx,. . ,Y.-1 is in E,., ( z x ) ( y l , . . , Y . - 0  = (z(yx , . . ,y . -1) )x '  
= z(x,  Y l , . . , y , - 1 )  whereas ( z ( x ) ) ( y x , . . , y , _ O =  z ( y l , . . , y , _ l , x )  so that 
zx  = z(x) need not hold. Sometimes zx  is written as (z) (x). 

Suppose that each of n and k is a positive integer, z is in M,,,.+k, w is in Mr,,,, 
u is in Mm,k and x = xx,..,Xm is an orthonormal sequence in Era. Then 

E ((zw)(x~))u(x~)= Z ((z(x~))w)u(x~) 
p e Jm,k  lJ e Jm,k  

Z Z (Z(X,))(Xq)W(Xq)U(X~). 
P e Jm,k q e J m , n  

( Z W ) N  - -  

Hence if  h = w ® u, 

(zw)u = E Z (z(x~))(x,)(h(x,))(x~) 
p e J m , k  q e Jm,,, 

Z z(x,)h(x,)  = zh. 
r e J ,n ,n+k 

Hence w ® u is the (necessarily unique) element h of Mra,n+k soch that zh = (zw)u 
for all z in M,.,.+k. 

If  each of n and k is a positive integer, each of w and u is in Mm,. and each of x 
and y is in M.,,k , then (w ® x) (u ® y) = (wu) (xy). This is a simple consequence 
of the defining equation for inner product in Mm,.+k. From this one has that 

II w ® x II ~ = ( w  ® x)(w ® x)=(ww)(xx)= II w ll=ll x I[ ~ so that II w ® x 1[ = II w [I II x II. 
If  u is in Mm,. and B. denotes the set of all permutations on {1, . . ,n},  then 

Su (c.f. [1], p. 190) defined by 

( ( S u ) ( x x , . . , x . )  = (1/nI) Z u(x~(x),.. ,x~(.)) 
~ 6  B n 

for all x l , ,  . ,x .  in E,, is called the symmetric part of u. S itself is called the 
symmetrizer operator. 

Now suppose that  o is in Mm,. and 

Lu = Z u(xp)v(xp) = uv 
P e Jm,n 

for all u in S.,... 
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., x,. ). Hence If  q = {q~}~"=l is in Kin,., then u(x  ~) denotes u ( x [ t , ,  q" 

I_.u = Z, Z, u(x,)v(x,)= ~, u(x ~) ~ v(x,) 

= ]C u(xp)~(x~)-- u~ 
P ~ Jra,n 

where ~(xp) = [ ct- l(~(p)) I - t y~, e.-,~.~p))v(x,) for all p in J,.,.. A simple counting 
argument gives that ~ = Sv. Hence, if v is in M,.,., then Sv  is the (necessarily 
unique) element w of S,.,a such that uv = uw  for all u in S,.,.. This is equivalent to 
saying that S is the orthogonal projection of M. , .  onto Sin,., i.e., S 2 = S, S* = S. 

Suppose that  u is in M,.,., w is in M,..k. Denote S(u  ® w) by u • w. This is, 
except for the numerical factor (k  - n ) ! / k  tnt the symmetric product of u and w in 
([1], p. 220). Hence it is concluded that commutivity, associativity and distributivity 
with respect to addition in the spaces of multilinear functions hold. In addition 
observe that  if r is in S,.,.+k, then r(u • w) = (Sr)  (u • w) = r (S(u  • w)) = r (S(u  ® w)) 

= ( S t )  (u ® w) = r(u ® w) = (ru)w so that one has the useful fact that r(u • w) 

= (ru)w.  Note also that  II u .  w I1 -- I1 S(u ® w)II I1 u ® w U = 11 u I111 w ll- 
Suppose now that each of a, b and c is a positive integer, c > a + b, z is in 

Sin,c, u is in Sm,a and w is in S,.,~. To see that ( zu)w = (zw)u ,  consider the following: 
I f  c = a + b, the result follows from the fact that u • w = w • u. Suppose that 
c > a + b  and denote c - ( a + b )  by n. Denote by q a member of S.,,n. 
Then z((q " u) " w) = (zw)  (q " u)  = ( ( zw)u)q  and likewise z((q . w) " u)  = ( (zu)w)q.  

Hence ( ( zu)w)q  = ( (zw)q  = ( ( zw)u)q  for all q in S,.,. and so ( zw)u  = (zu)w.  

From the definition of tensor product it follows that  if y is in E,. and n is a 
positive integer, then (y ® . .  ® y) ( x l , . . , x . )  = (yxt) • • ( yx . )  = ( y x . ~ l ) . .  (yx¢c.)) 

n 

for any permutation a on {1, . . ,n}.  Hence y ~ 2 . _ ~ y  is symmetric and so is 

n 
equal to ~_L~y__ and will be denoted by y". 

n 

From ([2"1, p. 92) it follows that if  each of u and w is in S,.,. and uy  ~ = wy" for all 
y in Era, then u = w. Hence if u is in S., . ,  v is in S,.,k and u # 0 # v it follows that 
u .  v # 0. To see this, suppose otherwise. Then the real valued functions f and g 
on E,, such that f ( y )  = uy" and  g(y)  = vy  k for all Y in E,. have the property that  
f ( y ) g ( y )  = (uy")  (vy k) = (u • v)y  *+k = 0 for all y in E,. and hence either f or g 
must be zero on some open subset of E,.. But from this it would follow that either 
f or g is identically zero on E,., i.e., u = 0 or v =0 ,  a contradiction. 

Suppose that  each of n and k is a positive integer, A is a non-zero member of 
S,.,. and M is the transformation from S,.,k to S,.,k such that M u  = A ( A  • u)  for all 
u in Sm,k. Then M is linear, symmetric and (strictly) positive. The linearity of  M is 
clear enough. To see that M is positive and symmetric, suppose that each of u and 
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v is in Sin, ~. Then ( M u ) u  - - (A(A.  u ) ) u = ( A ,  u ) ( A .  u ) =  [[A. u l [ 2 > 0  unless 
u = 0. Also, (Mu)v  = ( A ( A "  u))v = ( A .  u ) ( A .  v) = u ( A ( A "  v)) = u(Mv) .  

3. Suppose that each of  k, m and n is a positive integer and A is a member of  

Sin,. such that I[ A I[ = 1. Denote by M the transformation on Sin, k such that 
M u  = A ( A  • u) for all u in Sm.k. From section 2, M is invertible, symmetric and 
positive. Hence M-1  has these properties. Denote by P the transformation on 
Sm,.+k so that Pw = A • [M-I (Aw)]  for all w in S,.,.+k. It  is easy to check that P 
is symmetric and idempotent and hence each of P and I - P is an orthogonal 

projection. 
Denote by G the transformation on Sm,.+k such that  Gw = A . ( A w )  for 

all w in S.,.+k. Note that  if u is in Sm,~ and p is a positive integer, then G(A • u) 

= A " (Mu) ,  ( I  - G) (A  • u ) =  A " [ ( I -  M ) u ] ,  Cd[A . u] = A . (MPu) and 

( I  - G)P(A  • u )  = A . [ (I  - M ) ' u ] .  
Denote I - P by L and denote I - G by Q. If  t is a positive integer and Z is a 

linear transformation on SIn,,, then Iz I denotes I l z x  II- 

Theorem. Q L =  LQ = L and limp..®Q p = L. 

Proof. To show that QL = LQ = L it is sufficient to show that PG = GP = G 

since QL = ( 1 -  G ) ( I  - P)  = I - G - P + GP and LQ = I -  G -  P + PG. 

I f  w is in Sm+,+k, then PGw = A "  ( M - I ( A ( G w ) ) ) = , 4  - ( M - ~ ( a ( A  • (aw)))) 

= A "  ( M - ~ M ( A w ) )  = A .  (Aw) = Gw and G e w  = A .  ( A ( A .  ( M - I ( A w ) ) )  

= A • ( M M - X ( A w ) )  = A • (Aw) = Gw. Hence PG = GP = G. 

I f  w is in Sm,n+k and A w = O ,  then Q w = w - A ' ( A w ) - - - w  and L w  

= w - A "  ( M - I ( A w ) )  = w. 

I f  for some u in S,,,,k, w = A ' u ,  then L w = A "  u - A . ( M - t ( A ( A . u ) ) )  

= A ' u  - A . u  = 0. Since if u is in S,,,,k,(Mu)u = II A.u 112 __< 11 a I1211 u 112 = II u II 2, 
it follows that ] M [ < 1. Inasmuch as M is symmetric and positive it must be that 
II - M I < 1. From this it follows that if w is in Sm.,+k and w = A • u for some u 
in Sin,k, then 

lira 11Q'wll = lim IIA' ( ( z -  M)'u)ll < l i m l [ ( I -  M)'ull =0.  
p--~ oo p--+ Qo p - ~  

Suppose w is in S,,,,,+k. Then limp..,®QP(Pw) = 0 since Pw is of the form A • u 
for some u in S,,,,k. Hence, 

QPw = QP(Pw) + QP((I - P)w) = QP(Pw) + QP(Lw) = QP(Pw) + L w  ~ L w  asp ~ oo. 

The theorem follows since Sm,.+k is finite dimensional. 

Suppose now in addition to the above notation and definitions that R is in 
S~,~ and each of  Z and V is a transformation on Sm,~+k such that 
Z w  = w + A " [R  - (Aw)] = (I  - G)w + A • R ,  Vw = w + a • ( M - I ( R  - (Aw)))  

= ( I  - P)w + A .  ( M - t R )  = L w  + A • ( M - ~ R )  for all w in Sm..+ k. 
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THeOREm. V Z  = Z V  = V and limp_, ~ZPw = Vw f o r  all w in Sm,,+k. 

Proof. If w is in Sm.n+k, then Z V w = ( I - G ) V w + A . R = ( I - G )  
[(I - P)w + A "  ( M - 1 R ) ]  + A" R = QLw + A "  ( M - 1 R )  - A "  ( A ( A .  ( M - I R ) ) )  

+ A . R = Lw + A " ( M - 1 R ) -  A " ( M M - 1 R )  + A " R = Lw + A " ( M - 1 R )  = Vw 

and V Z w  = L Z w  + A .  (M-1R)  = L(Qw + A .  R)  + A .  ( M - 1 R )  = Lw + L ( A .  R)  
+ A .  ( M -  IR) = Lw + A"  R - A"  ( M - 1  ( A ( A .  R))) + A" ( M -  1R) = L w  + A .  g 

- A • ( M - 1 M R )  + A • (M-1R)  = Lw + A • ( M - 1 R )  = Vw. Hence ZV = VZ = V. 
By induction, if p is a positive integer and w is in Sm.,+k, ZPw = QPw 
+ [ Q P - I ( A  • R)  + . .  + Q(A • R)  + A • R].  Remember that i f p  is a positive inte- 
ger, QP(A " R)  = A " ((I - M)PR)  and hence ZPw = QPw + A • ( [ ( I -  M) p-1 
+ . .  + (I  - M )  + I]R) .  But it was seen in the proof  of  the preceding theorem that 
[ I - M [  < 1. Hence l i m , _ . ® [ ( I - M y  -1 + .. + ( I - M ) + I ]  = M  -1.  Since 
limp_,oo QPw = Lw it follows that limp~®ZPw = Lw + A • ( M - 1 R )  = Vw.  

4. Suppose that each of m, n and k is a positive integer, A is in Sin, , and IIAII = 1. 
Suppose in addition that D is a convex open subset of E,. which contains the origin. 
I f  p is a positive integer, then CP(D) denotes the set of  all real-valued functions U 
with domain D such that U has a continuous pth Fr6chet derivative (general 
reference for Fr6chet derivatives is [2]). Denote by A(D) those real-valued functions 
U on D such that i fx  is in D, U(x) = Z~°=o(1/q !)U(q)(O)x q and ]~q~ o(1/q !)II u(q'(0)II 
11 x 11 q converges. Denote by P(D) those members of A ( D ) w h i c h  are polynomials. 
Denote by R a member of C°(D) and denote by T the transformation from C'(D) 

to C°(D) such that if U is in C'(D),  then 

n - 1  f l  ( T U ) ( x )  = ~, (l/q!)U(q)(O)x ~ + dj[(1 - j ) " - t / ( n  - 1)!]{U(")(jx) 
q=O 0 

- [A(U(")(jx))  - R ( j x ) ] A } x "  for all x in D. 

THEOREM. I f  U is in C"(D), then A(uC")(x)) = R ( x ) f o r  all  x in D i f  and  only  i f  

T U =  U. 

Indication of proof. Suppose that U is in C~(D). If  A(U(")(x)) = R(x)  for all x in 
D, then an examination of the Taylor formula in the introduction gives immediately 
that T U  = U .  On the other hand, if T U  = U ,  then by the same Taylor formula, 

0 = U(x)  - ( T U ) ( x )  

fo 'd j[ (1  - l/(n 1) [A(U(")(jx))  - j)" !] R( jx ) ] (Ax")  

= d ( J l l x l l ) E ( l l x l l - J  llxll) a)t] 

EA(v'"'U II x I1 - ROll x II rx)](Ar~ 
r l lx l l  

= Jo aJE(l lxU- j )"- ' / (n-  1) ! ] [A(U(" ) ( j r , , ) )  - R( j r=) ]  [Ar~,] 
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for all x in D where rx = 0 if x = 0 and rx = (1/II x II ) x if x # 0o for all x 
in D. But this implies that [A(U~n)(x))-  R(x)](Ax ~) = 0 for all x in D since 
the above integral is an n-fold iterated integral. Therefore A(U~n)(x)) = R(x) for 
all x in D since Ax ~ can not be zero for all x in any dense subset of D. 

A further note on the definition of  T:  I f  z is an element of  Sin,n, c is a number 
and Az = c is not satisfied by z, then z - (Az - c)A is the closest element y of 
Sr,,~ to Z with the property that Ay = c. This observation was crucial in the dis- 
covery of the following theorem, which is the main result of this paper. 

THEOREM. I f  R is in P(D) and U is in A(D), then {TvU}~=I converges uni- 
formly  on closed and bounded subsets of D to a member Y of A(D) such that 
A(yt~)(x)) = R(x) for  all x in D. 

Proof. Suppose that R is in P(D) and U is in A(D) and denote by t a positive 
integer such that R ( x ) =  Y~tp=o(1/pl)Rtv)(O)xq for all x in D. Note that if k is a 
positive integer, then utk)(x)= ~ = k ( 1 / ( p -  k)!)U~v)(O)x p-k and that A(Utn)(x)) 

co = co l ]~v=n(1/(p- k)!)A(Utv)(O)x p-n) ] ~ v = n ( / ( P -  n)l)[A(Utv)(O))] x p-~ for all x 
in D. Then, if  x is in D, (TU)  (x) may be rewritten 

n - t  

(TU) (x )  = ~, ( 1 / p ! ) U ( P ) ( O ) x  p 

p = o  

p = n  p = 0  

n--1  

X 0/p!)vtp)(0)x p 
p = O  

+  [fo I ] d j(  1 - j )  n- lj p- n/((n _ 1 ) !(p - n) !) U tp) (O)x p 
ll = ll 
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n - - !  oO 

= Z (l/pt)u~')(O)xP+ Z (tlp!)cr~')(O)xP 
p = 0  p = n  

oo  

- Z (1/p t) [A(U~')(O)x'- "1] (~x") 
p----n 

t 

+ Z (1/(p + n)!)(R(v)(O)xg(Ax n) 
p = O  

n - 1  

= Z O/pt)V~')(O)x" 
p=O 

n+t  

+ Z O/ptl[V~')(o)- ~4. (~4(vc'~(o))) + a- (R~'-~)(o)]x , 
pmn 

O0 

+ Z OIp!)[vc')(o)- A .  (A(VC')(O)ll]x" 
p - - n + t + l  

n - 1  n + t  

= Z (1/p!)uc')(O)x'+ Z O/pt ) ( z ,  uc')(O))x • 
p = O  p=n  

+ ~: (1/v!)(Q~,VcP)(0))x p 
p = n + t + l  

where Zpw = w - A • (Aw) + A • R tp-n) (0) for  all w in Sin,p, P = n , . . ,  n + t 
and Qpw = w - .4 • (Aw) for  all w in Sm,~,, P = n + t + 1, n + t + 2 , . . .  Denote 
A(A • w) by Mpw for  all w in Sin,p, P = 0 , 1 , . . ,  denote w - A • (Mp-  ln(Aw)) by Lpw 
for all w in S,,,p, p = n, n + 1 , . .  and denote Lpw + .4 .  (M;_~n(R°'-~)(0))) by 
Vpw for  all w in Sin,p, p = n, n + 1 , . . .  

By induction, if q is a positive integer and x is in D° 

n - 1  n+t  

( T ' U ) ( x )  = Z (1/p!)U~')(O)x -I- Z (1]pt)(Z~pU(')(O))x" 
pr.O p f n  

+ Z • (1]pl) (Q~Ut')(O))x ". 
p = n + t + l  

The convergence of the above infinite series (and its membership in A(D)) is 
assured since I Qp [ N 1 for each positive integer p and U is in A(D). 

By the theorems of the preceding section, if x is in D, 

n - 1  n + l  

lira (T~U)(x)  = Y., (1/p!)UtP)(O)x p + E (1]pt)(VvUtP)(O))x p 
4-*00 p = O  p = O  

Go 

+ Y. (1/p!)(LpU~P)(O))x p. 
p ~ - n + t + l  

This limit is denoted by (Ka,RU)(x) for all x in D. Membership of Ka,RU in A(D) 
is assured since [L,I < 1, p = n + t, n + t + 1 , . . .  That convergence of {T~U}~= 1 
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to Ka,aU is uniform on closed and bounded subsets of A(D) may be seen from the 
inequality: 

n + t  

[(T'  U) (x) - (T ~+' U) (x)[ -< ~] (l/p !)[ (Z~,U(P)(OI)x p - (Zg+'U(')(Ollx" [ 
p = n  

b 

+ Z (l/p!)I(QqU(')(Ol) -- (Q~,+'U(P)(O)lx p ] 
p = n + t +  l 

oo 

+ 2 Z (1/pt)llv")(o)llllxll" 
p = b + l  

for all x in D provided that each of q, r and b is a positive integer such that 
b > n + t .  

Denote KA,eU by Y. Then A(Y(")(x)) = R(x) for all x in D since, i f x  is in D, 

n + t  oo 

Y(")(x) = Z (l/(p - n)!l[VpU(t')(O)]x p-" + Z (l/(P-nl![LpUtP)(O)]x p-" 
p = n  p = n + t +  l 

and hence 

since 

and hence 

n + t  

A(Y(")(x)) = Y~ (1/(p - n)!)A{[V,U(P)(OI]x "-n} 
p ~ n  

oO 

+ Z (1/(p - nl!lA{ELpU<')(O)Jx p-"} 
p = n + t +  l 

n + f  

= Z (l/(p - n)!)(A(V,U (p) (O)))x'-" 
p----n 

+ ~] ( l / (p- nl!)(A(LpU(')(Ol))x p-" 
p = n + t + l  

n + t  t 

= Z (l/(p - n)l)R ('-") (O)x'-" = Z (I/p!)R(P)(O)xP= R(x) 
p = n  p r O  

A(LpU(P)(O)) = A(U(v)(O)) - A(A " (M;  t_,(A(U(v)(O))))) 

= A(U(P)(O)) - Mp_,Mv_,,(A(U(P)(O))) = 0 

A(VpU p (0)) = A(LpU(P)(O)) + A(A . (M'~I_,(R(V-")(O)))) 

= Mp-,M'~I-,(R(P-")(O)) = R(P-')(O), p -- n, n + 1 , . . .  

This completes a proof of the theorem. 
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5. Examples. In this final section some examples are considered and some 
comments made concerning boundary value problems. Suppose that each of m 
and n is a positive integer, A is in Sin,., II A II = 1 and D is a circular open disk 
with center the origin of Era. Then if U is in A(D), 

n - 1  

(KA.oU) (x) = ]E (l/p I)U(P)(O)x p + 
p=0  

for all x in D. Hence, 

(11p !)[U(')(O)- A . ( M ~ . ( A ( U t P ) ( O ) ) ) ) ] x "  
p = n  

n- -1  co 

(KA,oU)(x) = X (1/p!)V¢~)(O)x ~ + Y~ (1/p!)VcP)(O)x ~ 
p=O p = n  

- X O/p!)V<p>(o)(a • (MfL(AxO)) 
p~n 

= u(x) - (ax ')  X V(P)(O)(A • (M~2.x"-")) 
p-- .  

since AxP= (Ax")x p-" for all x in D. Hence (K~,oU)(x)= U(x) if  Ax '=  O. 
Several examples are now considered in light of this observation. 

EXAMPLE. 1. Take m = 2, n = l. Suppose that ( b ) is a unit vector in E2 and 

consider the simple partial differential equation aVl + bV2 = 0. In the notation 

of this paper, this equation is written Av' = O where A is ( ab ) or, more clearly, 

the linear functional dual to ( ~ ) .  I f  U is a real valued analytic function on the 

region D mentioned above, then in the notation of Section 4, 

co 
3 , f -1  ~ p - 1  (K~ ,oV) (x )  = V(x)  - (Ax) Z (l/p!)uCP~(0) (A .  ~,.~_~+ ) 

p = l  

for all x in"D where Mp_ 1 is the transformation from $2,~- t to S2,p- t such that 
Mp_lW = A(A • w) for all w in $2,p-1. Since Ax = 0 for all x in E2 which are 

to ( b ) ,  one has that (KA,oU)(x,= U(x)for all such vectors x. 
t ~ 

orthogonal 
x / 

Hence if V = K~,oU, then V not only satisfies aVl + bV2 = 0 but also satisfies 
the boundary condition V(x) = U(x) for all x on the common part of L and D 

w.oro .+ is ,.o,ioo w.io  o .o ooa, to ( a )  
$ 

b "  / 

Since L is orthogonal to the characteristic direction of the equation, it is, in a 
sense, an optimal line on which to specify boundary conditions. Note that KA.oU 
can, in this case, be extended by continuity to the set of all real valued functions 
on D which have at least one continuous derivative. 
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EXAMPLE 2. Suppose that m = 2 ,  n = 3  and that each of A1,A2 andA3 is inE2 
so that no two are linearly dependent. Suppose in addition that A =  At "A2" A3, 
I1A II = 1 and that D is a convex region containing the origin of E 2. Consider the 
problem of finding a member V of A(D) so that AV 0)=  0. If  the dual of A t is the 

( a ' ) o f E 2 ,  i = l , 2 , 3 ,  thenth isequat ioncanbewri t ten  point b~ 

C 1 VII 1 -~- C 2 Vl l  2 --~ C 3 V122 + C4V222 ~-- 0 

where C t = ala2aa, C 2 = ata2b a + atb2a 3 + bla2a a, C a = atb2b3 + bta2ba 
+ blb2aa, C4 = btb2ba. / \  

ta't   e iry, o Clearly for this equation the three vectors b~ 

teristic directions. If  U is in A(D) and x is in D, then 

(Ka,oU)(x) = U(x) - (Ax 3) ~ (1/pl)U(P)(O) (A " M/-_~xP-a)). 
p=3 

Since Ax a = (Alx)(Azx)(Aax)  for all x in D, it is clear that (Ka,oU)(x) = U(x) 
if x is in D and is orthogonal to one of At, A 2 or A3. This indicates that Ka,oU is 
a solution to a kind of "Goursat  problem" AV TM = 0, V(x) = U(x) if x is in D 
and orthogonal to one of At, A2 or Aa. Hence Ka.oU "ignores" all information 

contained in U except its values on lines through ( ~ )  orthogonal to one of the 

characteristic directions. This observation seems to suggest a study of much more 
general third order partial differential equations on E2 with three real charac- 
teristics and with data specified on lines orthogonal to the characteristic directions. 

EXAMPLE 3. Suppose that rn = n = 2, D is a convex region containing the 
origin of E2 and A is chosen so that A(x, y) = 2-1/2xy, the inner product of x 
and y, for all x, y in E2. Then Laplace's equation can be written A(U t2)) = 0. 

Suppose that U is in A(D) and denote KA, o U by Y. Suppose that t is a positive 
integer ~ 2. Then, if x is in D, 

YtO(x) = ~ (1/(p - t)I)[utP)(0) - A"  (M f_~2(A(U(P)(O))))]x ~-' 
p=t 

and hence Y (°(0) = (I - P,)UC°(0) where Ptw = A • (MT_a2(Aw)) for all w in $2.,. 
Note that P~ is an orthogonal projection of S2.t onto a subspace S~,t consisting 

of all vectors A .  v for all v in $2,t-2 and hence I -  Pt is the complementary 
projection. Denote by a, b an orthonormal basis of E2 and denote by g and h the 
members of S2,t such that 

f 1, r = 0 , 4 , . ,  f 0 , r = 0 , 2 , . .  
g(a ' -"  b') = ~ -  1, r = 2,6, (r < t) and h(a'-r" b') = ~  1, r = 1 ,5 , .  (r __< t) 

t 0, r = 1,3, t - l , r  = 3,7, .  



132 J.W. NEUBERGER 

Some calculation gives that gh  = 0 and [[ g I] 2 = 11 h II 2 = 2 t - I  Denote 2 -c ' -  i)/2g 
by w and 2 -~+-1)/2 h by z. Then w z = O ,  II w II = II ~ I[ = L Since s2,, is of  dimension 
t + 1 and S[,t is of dimension t - 1, it follows that the pair w,z is an orthonormal 
set spanning the orthogonal complement of S[,+. Hence, if Y~°(0) = (w(U(°(O)))w 
+ (z(U(°(O)))z,  x is in D, and x = ra + sb, then 

[YCO(0)]x' = Y+ U ( o ( O ) ) ( a ' - ' . b ' )  "] [x ' ( a ' -P .b r )  "] 
p=O 

p=0 

'(;) + (z(tym(0))) 2 [z(a'-'. b")][x'(a'-', b')] 
p=O 

= 2 -¢'- ' )Re{[fD, - iDa)' U]f0)}Re[(r + is)"] - 2 -~+- l)Im{[(D° - iDa) + U](0)} 

Im [(r + is)''] 

= 2 - ( t - ' )  Re{{[ (D°-  iDb)tu'](O)}(r + is)'} 

where D,, D b denote directional differentiation in the a and b directions respectively. 
Knowledge of  [Y~°(0)']x t for all x in D, t = 0,1, 2 , . .  gives, of  course, a power 
series expression for Y. 
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